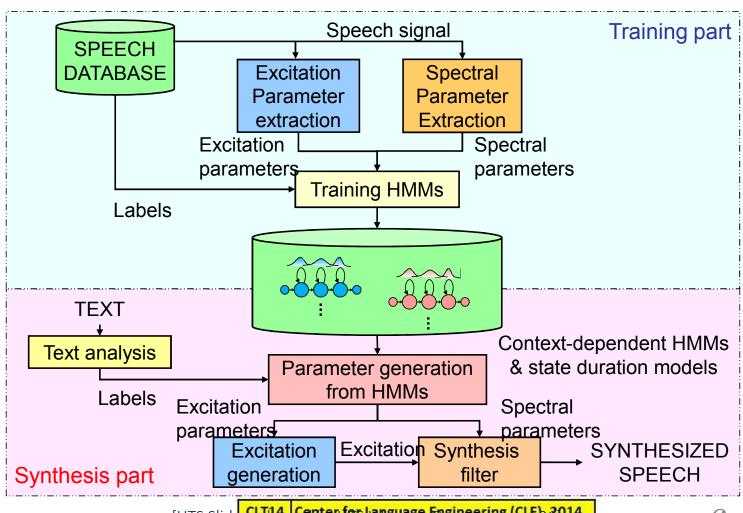

Presenter:

Dr. Tania Habib

Outline:

- Overview
- Unit selection vs HMM based Speech Synthesis (HTS) [1]
- Development
- Requirements for Voice building
- Data Set
- Challenges
- Subjective Evaluation
- Erroneous Words
- Summary

Speech Synthesis Overview:


Types of Speech Synthesis:

- Rule-based, formant synthesis
 - Hand-crafting each phonetic units by rules
- Corpus based:
 - Concatenative synthesis (Unit Selection)
 - High quality speech can be synthesized using waveform concatenation algorithms.
 - To obtain various voices, a large amount of speech data is necessary.
 - Statistical parametric synthesis (HMM based)
 - Generate speech parameters from statistical models
 - Voice quality can easily be changed by transforming HMM parameters.

Unit Selection vs. HTS

Unit Selection	HTS
Advantages:	
High Quality at Waveform level (Specific Domain)	Small Foot PrintSmoothStable Quality
Disadvantages:	
Large footprintsDiscontinuousUnstable quality	Vocoder sound (Domain-independent)

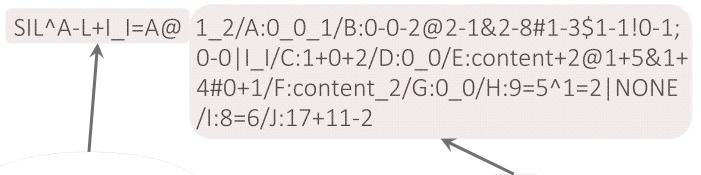
HTS Overview:

[HTS Slides CLITA Sentenfor Language Engineering (CLE) 2014

Preliminary requirements for the HTS toolkit:

- Annotated Training data.
- Define speech features (MFCC, F0 and duration) for model training.
- 3. Sorting out unique context-dependent as well as contextindependent phonemes (from the training data) for model training.
- 4. Unified question file for spectral, FO and duration for context clustering.

Data Set Used:

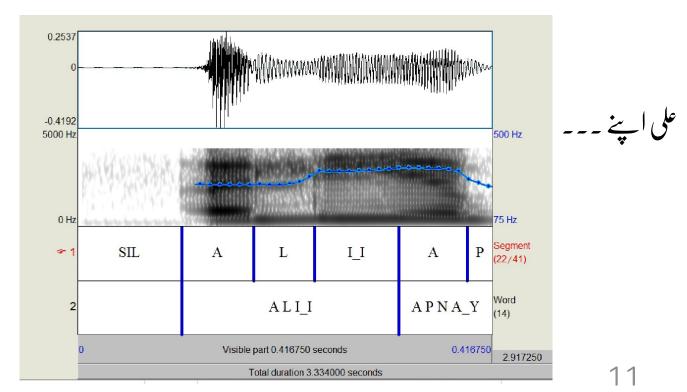

- Source:
 - Paragraphs taken from Urdu Qaida of Grade 2 and 4 respectively
- Duration :
 - 30 minutes
- Total number of utterances:
 - 347
- Recording parameters:
 - Sample rate : 8KHz (up-sampled to 48KHz)
 - Channel : Mono
 - Recording format: .WAV
 - Speaker: Native Urdu female speaker

CLT14 | Center for Language Engineering (CLE), 2014

Challenges:

- Generation of the full-context style labels.
- Addition of Prosodic Layers
 - Segment
 - Stress
 - Syllable
 - Word
- Unbalanced Training Data
- Defining the Question Set (Context Clustering)

Full-Context Format(1/2):


Segmental Context

Supra-Segmental Context

Segmental	Supra-Segmental
 Current Phoneme Previous two Phonemes 	SyllableStress
Next two Phonemes	WordPhrasePOS

Full-Context Format(2/2):

```
x^x-SL+A=L@1_0/A:0_0_0/B:0-0-0@1-0&1-1#1-1$1-1!0-0;0-... x^SL-A+L=I_I@1_1/A:0_0_0/B:0-0-1@1-2&1-9#1-3$1-1!0-2;0-... SIL^A-L+I_I=A@1_2/A:0_0_1/B:0-0-2@2-1&2-8#1-3$1-1!0-1;0-0... A^L-I_I+A=P@2_1/A:0_0_1/B:0-0-2@2-1&2-8#1-3$1-1!0-1;0-...
```


Questions on Segmental/Prosodic Layers:

Phoneme

- {preceding, succeeding} two phonemes
- current phoneme

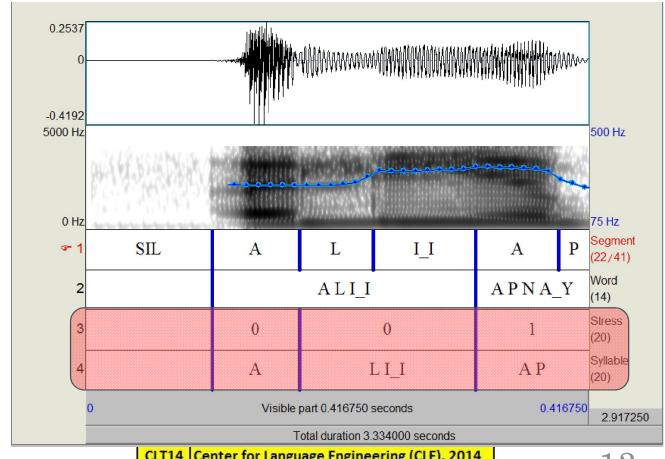
Syllable

- # of phonemes at {preceding, current, succeeding} syllable
- {accent, stress} of {preceding, current, succeeding} syllable
- · Position of current syllable in current word
- # of {preceding, succeeding} {accented, stressed} syllable in current phrase
- # of syllables {from previous, to next} {accented, stressed} syllable
- Vowel within current syllable

Word

- Part of speech of {preceding, current, succeeding} word
- # of syllables in {preceding, current, succeeding} word
- Position of current word in current phrase
- # of {preceding, succeeding} content words in current phrase
- # of words {from previous, to next} content word

Phrase


of syllables in {preceding, current, succeeding} phrase

CLT14 | Center for Language Engineering (CLE), 2014

.

Addition of Stress/Syllable Layer:

- · Added layers:
 - · Stress
 - · Syllable

CLT14 | Center for Language Engineering (CLE), 2014

Unbalanced Training data:

- · High occurrence for vowels
- · Some of the phonemes were completely ignored
 - · {J_H, L_H, M_H, N_G_H, R_H, Y, Z_Z} [2]

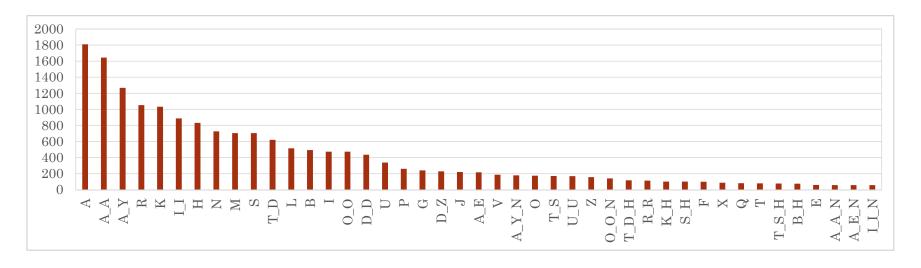


Figure. Phoneme Coverage for the 30-min speech data

Context Clustering (Question Set):

- Number of possible combinations are quite enormous with 53 different questions.
- Possible contexts = Cⁿ

where C = Total count of basic phonetic units, n = Total number of Questions

• With only Segmental Context (n=5) Possible models are:

 $66^5 \approx 1252 \text{ million}$

If we consider all the context, it will be practically infinite.

Solution:

- Record data having maximum phoneme coverage at tri-phone or di-phone level.
- Apply context clustering technique to classify and share acoustically similar models

 CLT14 | Center for Language Engineering (CLE), 2014
 15

Subjective Evaluation:

- Testing Methodology:
 - Mean Opinion Score (MOS)[3] for:
 - · Naturalness
 - · Intelligibility
- · Naturalness:

How close it seems to be produced by a human?

· Intelligibility:

How much conveniently the word was recognized?

Subjective Testing (Results):

Listener Type	MOS Naturalness	MOS Intelligibility
Technical 1	3.23	3.65
Linguistic 1	2.82	3.66
Linguistic 2	2.86	3.58
Linguistic 3	3.48	3.52

Table 1. Mean Opinion Score (MOS) results of four listeners

Erroneous words:

Nastalique Style	CISAMPA (Correct)	Listened (Incorrect)	Coverage (%)
طرف	T_DARAF	T_DA L AF	5.92
گا	GA_A	D_DA_A	1.35
معلوم	MAYLU_UM	MAT_DLU_UM	0.00
تھے	T_D_HA_Y	T_SA_Y	0.66
رزی	RAZI_I	RAD_DI_I	0.88
کیونکہ	KIU_U_NKA_Y	T_SU_NKA_Y	0.15
حق	HAQ	HABS	0.46
نعد	BAYD_D	BAD_D	0.00
خيال	XAJA_AL	FIJA_AL	0.50

Table 2. Synthesized words with errors

CLT14 Center for Language Engineering (CLE), 2014

Some Synthesized Examples:

Synthesized: **Training Set:**

Seen Context:

Un-seen Context:

Different Carrier Word:

Summary:

- Text to Speech Synthesis (TTS):
 - Concatenative
 - · Parametric (Hmm based)
- Requirement for Voice building
 - · Annotated speech corpus
 - · Speech features
 - · Question file
- · Challenges
 - · Full context style labels
 - · Addition of prosodic layers
 - Question file for context clustering
- Subjective Evaluation
- Erroneous words

References:

- 1. H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. Black and K. Tokuda, "The HMM-based speech synthesis system (HTS) version 2.0," in proc. of Sixth ISCA Workshop on Speech Synthesis, Bonn, Germany, August, 2007.
- 2. "IPA to CISAMPA Conversion Chart," Center for Language Engineering, UET, Lahore, [Online]. Available: http://www.cle.org.pk/resources/CISAMPA.pdf. [Accessed 3 March 2014].
- 3. M. Viswanathan and M. Viswanathan, "Measuring speech quality for text-to-speech systems: development and assessment of a modified mean opinion score (MOS) scale," Computer Speech & Language, vol. 19, no. 1, pp. 55-83, 2005.